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CHAPTER ONE

Static Estimation

1.1 Random Scalars

A random scalar variable x is described completely by its density function p(x), where
p(x (0)) dx is the probability that x will take on values between x (0) and x (0) + dx (see
Fig. 1.1). Clearly p(x) ≥ 0 and∫ ∞

−∞
p(x) dx = 1. (1.1)

It is described approximately by its mean value x̄ and its variance σ 2, where

x̄ ≡ E(x) =
∫ ∞

−∞
xp(x) dx, (1.2)

σ 2 ≡ E(x − x̄)2 =
∫ ∞

−∞
(x − x̄)2 p(x) dx (1.3)

Here σ is called the standard deviation or root-mean-square (RMS) deviation from
the mean value.

Two important scalar density functions are (see Fig. 1.2):

� Uniform density:

p(x) =
{

1/2a if |x − x̄ | < a,

0 if |x − x̄ | > a,
(1.4)

which implies that the standard deviation is σ = a/
√

3.
� Gaussian density:

p(x) = 1√
2πσ

exp
[
− (x − x̄)2

2σ 2

]
. (1.5)

1
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p(x)

dx

x(0) x

FIGURE 1.1 Density Function of a Random Scalar
Variable

1.2 Random Vectors

A random vector x = [x1, x2, . . . , xn]T is described completely by its density func-
tion p(x) = p(x1, x2, . . . , xn), where p(x (0)) dx1 dx2 · · · dxn is the probability that x
will take on values in the volume element x (0)

i < xi < x (0)
i + dxi , i = 1, 2, . . . , n (see

Fig. 1.3). Clearly p(x) ≥ 0 and∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x) dx1 dx2 · · · dxn = 1. (1.6)

The vector x is described approximately by its mean value x̄ and its covariance matrix
X, namely

x̄ ≡ E(x) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
xp(x) dx1 dx2 · · · dxn, (1.7)

X ≡ E(x − x̄)(x − x̄)T

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
(x − x̄)(x − x̄)T p(x) dx1 dx2 · · · dxn. (1.8)

The covariance matrix

X =




X11 · · · X1n
...

...
Xn1 · · · Xnn


 (1.9)

is symmetric, i.e., Xi j = X ji . Note that Xii = σ 2
i , and Xi j is the covariance or correla-

tion of xi and x j . If Xi j = 0, then xi and x j are said to be uncorrelated.

00 xx

p(x) p(x)

σ σ

1
√2πσ

1/2a

a a

− x−x

FIGURE 1.2 Uniform and Gaussian Density Functions for a Random Scalar Variable
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p = constant

x1

dx1
x2

dx2FIGURE 1.3 Density Function of a Random
Two-Vector

Two important density functions are:

� Uniform density:

p(x) =
{

1/V inside 	,
0 otherwise,

where V is the volume inside 	. In two dimensions, the “volume” is an area and
	 is a closed curve (see Fig. 1.4). The mean value of the vector (x̄1, x̄2) is at the
centroid of the area inside 	. The variances X11, X22 are the second moments of
area inside 	 about centroidal x1, x2 axes; the covariance X12 is the corresponding
cross-moment of area. The principal axes y1, y2, rotated about the centroid, are
such that Y12 = 0.

� Gaussian density for an n-dimensional vector:

p(x) = 1
(2π)n/2|X |1/2

exp
[
−1

2
(x − x̄)T X−1(x − x̄)

]
.

The contours of constant p are hyperellipsoids defined by

(
y1

σ1

)2

+ · · · +
(

yn

σn

)2

= m2.

x2
x2

x1 x1

(  1,   2)

y1

y1

y2

y2

Γ

p = constant
      (ellipses)

x− x−

(  1,   2)x− x−

FIGURE 1.4 Two-Dimensional Uniform and Gaussian Density Functions
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The probability of x having values inside one of these ellipsoids is

n m == 1 2 3

1 .683 .955 .997
2 .394 .865 .989
3 .200 .739 .971

The marginal density function is defined as

p(x1, x2, . . . , x j ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x1, x2, . . . , xn) dx j+1 · · · dxn, (1.10)

where j < n.

The conditional density function (CDF) p(x2 | x1) is defined so that p[x (0)
2 | x (0)

1 ] dx2

is the probability that x2 will take on values between x (0)
2 and x (0)

2 + dx2, given that
x1 has the value x (0)

1 . It follows that

p(x1, x2) = p(x1 | x2) · p(x2) (1.11)

= p(x2 | x1) · p(x1). (1.12)

From this follows Bayes’s rule, namely that

p(x2 | x1) = p(x1 | x2) · p(x2)/p(x1). (1.13)

x1 and x2 are said to be independent random vectors if and only if

p(x1, x2) = p(x1) · p(x2), (1.14)

which implies that

p(x1 | x2) = p(x1), p(x2 | x1) = p(x2). (1.15)

Note that independence implies no correlation but not vice versa.

Linear Transformations of Gaussian Random Vectors

A very important property of gaussian random vectors is that a linear combination of
gaussian random vectors is also a gaussian vector. No other density has this property.

Stated analytically, if x and y are independent gaussian random vectors, i.e.,
x = N(x̄, X), y = N(ȳ, Y ), and

z = Ax + By, (1.16)

where A, B are known matrices, then it follows that z = N(z̄, Z) with

z̄ = Ax̄ + B ȳ, Z = AX AT + BY BT . (1.17)

(1.17) follows simply from the linearity of the expectation operator and the indepen-
dence of x and y. To show that z is still gaussian is more complicated (see for example
Ref. He).
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1.3 Generating Gaussian Vectors

A gaussian random vector with a specified mean value and a specified covariance
matrix can be generated using a zero-mean uncorrelated gaussian random vector by
using the square root of a positive-definite symmetric matrix (see below).

Suppose we wish to generate an n-dimensional gaussian random vector

x = N [x̄, X ]. (1.18)

We first factor X into ST S using the MATLAB command SQRTM orCHOL (see the
following subsection). Then we generate an n-dimensional zero-mean gaussian vector
z with unit covariance matrix In , i.e., a vector whose components are uncorrelated
and have unit variances; this is done in MATLAB using the command RANDN. The
desired vector is then

x = x̄ + ST z, (1.19)

because

E{[STz][zT S]} = ST E[zzT ]S = STIn S ≡ X. (1.20)

The Square Root of a Positive-Definite Symmetric Matrix

The square root of a positive-definite symmetric matrix is not unique. Two commonly
used square roots are the symmetric square root and the triangular (or Cholesky)
square root.

The Cholesky square root may be interpreted as successive “completing of
squares” row by row. One may start with the first row and work to the last row,
which produces an upper-triangular square root, or vice versa which yields a lower-
triangular square root. This is illustrated by an example below.

EXAMPLE 1.3.1 SQUARE ROOT OF A 3-BY-3 SYMMETRIC MATRIX
Consider the matrix

P =

1 2 3

2 8 2
3 2 14


, (1.21)

which, as the weighting matrix in a quadratic form, gives

J = xT Px = x2
1 + 4x1x2 + 6x1x3 + 8x2

2 + 4x2x3 + 14x2
3 . (1.22)

This expression can be factored into the sum of three squared quantities with no
cross-products, starting with x1, as follows:

J = (x1 + 2x2 + 3x3)2 − (2x2 + 3x3)2 + 8x2
2 + 4x2x3 + 14x2

3

= y2
1 + 4x2

2 − 8x2x3 + 5x2
3 (y1


= x1 + 2x2 + 3x3)

= y2
1 + (2x2 − 2x3)2 − 4x2

3 + 5x2
3

= y2
1 + y2

2 + y2
3 (y2


= 2x2 − 2x3, y3

= x3)

= yT y,
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where

y = U x, U =

1 2 3

0 2 −2
0 0 1


 ⇒ P = U T U. (1.23)

U is an upper-triangular matrix.
To find the lower-triangular square root, reverse the order of the quadratic form:

J = 14x2
3 + 4x3x2 + 6x3x1 + 8x2

2 + 4x2x1 + x2
1 . (1.24)

Completing the square of the first three terms gives

J = 14
(
x3 + 2

14 x2 + 3
14 x1

)2 − 4
14 x2

2 − 9
14 x2

1 − 12
14 x1x2 + 8x2

2 + 4x2x1 + x2
1 ,

(1.25)

and adding the remainder terms gives

J = y2
3 + 54

7 x2
2 + 22

7 x2x1 + 5
14 x2

1 , y3

= √

14
(
x3 + 2

14 x2 + 3
14 x1

)
. (1.26)

Completing the square of the second and third terms in (1.26) gives

J = y2
3 + 54

7

(
x2 + 11

54 x1
)2 − 54

7

( 11
54

)2
x2

1 + 5
14 x2

1 , (1.27)

and adding the remainder terms gives

J = y2
3 + y2

2 + 1
27 x2

1 , y2

=

√
54
7

(
x2 + 11

54 x1
)
. (1.28)

Finally,

J = y2
3 + y2

2 + y2
1 , y1


= 1√
27

x1. (1.29)

Hence

y = Lx, L =




1/
√

27 0 0

11/
√

378
√

54/7 0

3/
√

14 2/
√

14
√

14


 ⇒ P = LT L . (1.30)

Efficient codes have been developed for both the symmetric and the Cholesky square
roots; both are available as commands in MATLAB, Matrix-X, and Control-C.

PROBLEMS

1.3.1 LIKELIHOOD ELLIPSES IN TWO DIMENSIONS
Consider a normally distributed two-dimensional vector with x̄ = 0 and

P =
[

P11 P12

P12 P22

]
=

[
4 1
1 1

]
.

(a) Show that the eigenvalues of this covariance matrix are σ 2
1 = 4.30, σ 2

2 = 0.70, and the
corresponding eigenvectors are the columns of T where

T

=

[
.957 −.290
.297 .957

]
.
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(b) The likelihood ellipses are defined by constant values of �, where

�2 = [x1 x2]

[
4 1
1 1

]−1[
x1

x2

]
,

or, in principal axes,

�2 = [y1 y2]

[
4.30 0

0 0.70

]−1[
y1

y2

]
≡ y2

1

4.30
+ y2

2

0.70
,

where x

= T y. Plot the likelihood ellipses for � = 1, 2, 3. Check your plots using

PTELPS listed in Section 1.5 and on the disk.
(c) Show that the probability of finding x inside the � = l ellipse is 0.394, inside the � = 2

ellipse is 0.865, and inside the � = 3 ellipse is 0.989.

1.3.2 RAYLEIGH, BOLTZMANN, AND χ2 DENSITY FUNCTIONS
Let v be an n-dimensional gaussian random vector with components v1, v2, . . . , vn with
zero mean, and suppose that the components are uncorrelated and all have variance σ 2.

(a) For n = 2 show that the probability density function for the magnitude of v is

p(v) = v

σ 2
exp

(
− v2

2σ 2

)
,

where v2 = v2
1 + v2

2 . This is called the Rayleigh density function.
Hint: Change to cylindrical coordinates and use the circular symmetry.

(b) For n = 3 show that the probability density function for the magnitude of v is

p(v) = 2√
π

v2

σ 3
exp

(
− v2

2σ 2

)
.

where v2 = v2
1 + v2

2 + v2
3 . In the kinetic theory of gases, p(v) is called the Maxwell–

Boltzmann density function, where v is the velocity magnitude of molecules and
σ 2 = kT/m, with T is the temperature, k is Boltzmann’s constant, and m is the mass
of a molecule.
Hint: Change to spherical coordinates and use the spherical symmetry.

(c) For arbitrary n show that the probability density function for the magnitude of v is

p(v) = 2πn/2

	(n/2)
v(n−1)

(
1√

2πσ

)n

exp
(

− v2

2σ 2

)
dv.

This density is called the χ2 (chi-squared) density in n dimensions.
Hint: Change to hyperspherical coordinates and use the hyperspherical symmetry.
The volume element of an n-dimensional hyperspherical shell of hyperradius v and
hyperthickness dv is (Ref. He, p. 220)

2πn/2

	(n/2)
v(n−1) dv,

where 	(m + 1) = m	(m) and 	(1) = 1, 	(1/2) = √
π .
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1.3.3 SQUARE ROOT OF 3-BY-3 SYMMETRIC MATRIX
Given

P =


 1 −2 −1

−2 6 2
−1 2 10


.

(a) Find the upper-triangular Cholesky square root of P by completing the square. Check
your result by multiplication and by the use of the CHOLcommand in MATLAB.

(b) Find the lower-triangular Cholesky square root of P by completing the square.
Hint: Reverse the order of the quadratic form.
Check your result by multiplication and by the use of theCHOLcommand in MATLAB.

1.3.4 GAUSSIAN SAMPLE FROM UNIFORM SAMPLES
MATLAB has a random number generator RANDwhere the number density is approx-

imately uniform from 0 to 1. For simulation of discrete Gauss–Markov processes, one
would like to have a random number generator where the density is gaussian with zero
mean and unit variance. Adding N numbers with a uniform density produces numbers
with a density that tends toward a gaussian density, a special case of the central limit
theorem. Thus, a MATLAB code to generate numbers with an approximately gaussian
density having a zero mean and a unit variance from numbers having a uniform distribu-
tion between 0 and 1 is

w=0; for k=1:12; w=w+rand; end; w=w-6;

(a) Verify analytically that this algorithm produces numbers with zero mean and unit
variance, if the random number generator produces numbers with uniform density
on the interval from 0 to 1.

(b) Using MATLAB, generate 1000 numbers using the code in (a), and make a histogram
of the numbers using an interval of 0.3 (see the MATLAB code HIST.M). Also plot
on the histogram

1000(0.3)√
2π

exp
(

−w2

2

)
,

which is the corresponding gaussian density with zero mean and unit variance.
(c) MATLAB also has a gaussian number generator RANDN. Redo (b) with this method

of generating gaussian numbers.

1.4 Static Linear Estimation

Before considering estimation for dynamic systems, we consider the simpler case of
estimation for static systems. Suppose we wish to find an estimate of a vector x , given
a vector of measurements z that is linearly related to x :

z = Cx + v, (1.31)

where C is known, and the measurement error vector v is gaussian with zero mean
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and covariance matrix V, i.e.,

v = N(0, V ). (1.32)

We are also given a prior estimate of x as a gaussian vector with mean value x̄ and
covariance matrix P̄ , i.e.,

x = N(x̄, P̄). (1.33)

Following Kalman’s nomenclature (Ref. Ka1), we shall call the posterior estimate
(after incorporating the measurements) x̂ and the corresponding covariance matrix
P̂ , i.e.,

x = N(x̂, P̂). (1.34)

A simple derivation of the optimal estimate uses Bayes’s rule to find the value of x
that maximizes the likelihood function

p(x | z) = p(z | x)p(x)
p(z)

. (1.35)

From the data given above

p(z | x) = N(Cx, V ), p(x) = N(x̄,P̄), p(z) = N(Cx̄, C P̄CT + V ).
(1.36)

Thus

p(x | z) ∼ exp(−J ), (1.37)

where

2J = (z − Cx)T V −1(z − Cx) + (x − x̄)T P̄−1(x − x̄), (1.38)

because p(z) is not a function of x . Thus maximizing p(x | z) corresponds to mini-
mizing the quadratic form J with respect to x . The differential of J is

d J = dxT [P̄−1(x − x̄) − CT V −1(z − Cx)], (1.39)

and, for a stationary value of J with arbitrary dx , the coefficient of dxT in (1.39) must
be zero, which implies that the most likely value of x is

x̂ = x̄ + K (z − Cx̄), (1.40)

where

K = P̂CT V −1, P̂
−1 = P̄−1 + CT V −1C. (1.41)

Another derivation of (1.40)–(1.41) is to complete the square in in (1.38), which
gives

2J = (x − x̂)T P̂
−1

(x − x̂) + constant,

which implies

x = N(x̂, P̂) after measurement,
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or

x̂ = E(x | z), P̂ = E[(x − x̂)(x − x̂)T |z]. (1.42)

Still another approach is to use triangular or U T DU factorization (see Appendix A).

P̄ and/or V Singular – the Matrix Inversion Lemma

(1.41) may be expressed in another form, which is useful when either P̄ or V (or
both) are singular, using the matrix inversion lemma. This lemma states that if

A−1 = B−1 + CT D−1C, (1.43)

then

A = B − BCT(D + C BCT )−1C B. (1.44)

(1.44) involves inverting only one matrix, which may have a lower dimension than
A and B; the lemma is easily verified by multiplying (1.43) and (1.44) to yield the
identity matrix.

Using this lemma, (1.41) can be written as

K

= P̄CT (V + C P̄CT )−1, P̂ = P̄ − K (V + C P̄CT )K T . (1.45)

EXAMPLE 1.4.1 LINEAR ESTIMATION OF TWO PARAMETERS WITH THREE MEASUREMENTS
Consider three lines in a two-dimensional space, z = Cx + v, where

C =


1/

√
5 −2/

√
5

1/
√

2 1/
√

2
0 1


, V =


0.01 0 0

0 0.01 0
0 0 0.01


,

the ith row of C is a unit vector perpendicular to the ith line, and zi is the mea-
sured distance to the ith line from the origin. We generate a sample measurement
error v using MATLAB, namely v=sqrt(V)*randn(3,1)with V=.01*eye(3) (see
e01-4-1.m in the Examples folder on the disk). For x = [1 2]T , we obtain

z = [−1.4790 2.1720 1.9629]T ,

The batch method [no prior estimate (P̄−1 = 0)] gives

P̂ = (CT V −1C)−1 =
[

.0144 −.0006
−.0006 .0044

]
, x̂ = P̂CT V −1z =

[
0.9557
2.0548

]
,

so the RMS estimate error in x̂(1) is 0.1199 = (0.0144)1/2, and in x̂(2) is 0.0661 =
(0.0044)1/2.
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The sequential method uses two of the measurements, say the first and second, to
obtain a prior estimate, which gives

x̄ =
[

0.9454
2.1263

]
, P̄0 = (

CT
0 V −1

0 C0
)−1 =

[
.0144 −.0011

−.0011 .0078

]
.

Then use the third measurement to give the posterior estimate. Using (1.40) and
(1.41), we have

P̂ = (
P̄−1

0 + CT
3 V −1

3 C3
)−1 =

[
.0144 −.0006

−.0006 .0044

]
,

x̂ = x̄ + P̂CT
3 V −1

3 (z3 − C3 x̄) =
[

0.9557
2.0548

]
,

which agree exactly with the batch method above.
Figure 1.5 shows the batch estimate with the three lines and the 39% likelihood

ellipse. Figure 1.6 shows the sequential estimate. Note that line 3 gives no information
about x(1), so that the variance of the estimate in the x1 direction is unchanged (i.e., the
projection of the 39% likelihood ellipse on the x1 axis is unchanged).

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

39% likelihood ellipse

Line 2
Line 1

Line 3

x1

x 2

FIGURE 1.5 2-D Batch Position Estimation from Three Measured Lines
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1.8

1.85

1.75

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

x1

x 2

Line 2
Line 1

Line 3

Prior estimate

FIGURE 1.6 2-D Sequential Position Estimation; Prior Estimate Using Lines 1 and 2; Posterior
Estimate Using Line 3

PROBLEMS

1.4.1 2-D POSITION ESTIMATION FROM THREE MEASURED LINES

(a) Repeat Example 1.4.1 using measurements 1 and 3 for the prior estimate.
(b) Repeat Example 1.4.1 using measurements 2 and 3 for the prior estimate.

1.4.2 3-D POSITION ESTIMATION FROM MEASURED DISTANCES TO FOUR PLANES
Consider four planes in a three-dimensional space that do not intersect at the same point:
z = Cx + v, where C is a 4-by-3 matrix whose ith row is a unit vector perpendicular to the
ith plane, zi is the distance to the ith plane from the origin, and v is a zero-mean gaussian
random vector with covariance matrix V . Here we take

C =




−2/
√

5 0 1/
√

5
3/

√
35 5/

√
35 1/

√
35

3/
√

14 −2/
√

14 1/
√

14
0 0 1


, V = 0.04


1 0 0

0 1 0
0 0 1


.

(a) Find z for x = [1 2 3]T and a random sample of v from RANDNin MATLAB.
(b) Use the batch method to find x̂ and P̂ from z, C , and V .
(c) Take the four planes three at a time to find the four vertices of the tetrahedron that
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encloses x̂ . Using the MATLAB command PLOT3, plot x, x̂ , the six edges of the
tetrahedron, and the axes of the one-σ ellipsoid with center at x̂ . Also plot the two
side views and the top view of these objects.

(d) Use the sequential method to find x̂ and P̂ . Use three of the measurements to make
an initial estimate, and the fourth measurement to update this estimate. Do this for
all four of the possible ways, verifying that they all give the same result as the batch
estimate in (b).

1.5 Static Nonlinear Estimation

Many estimation problems are nonlinear rather than linear. For example, we may
have

z = c(x) + v, (1.46)

where c(x) is a known nonlinear function of x and v is a random vector. Suppose
we believe that v has zero mean value and covariance matrix V. Then a reasonable
criterion for estimating x , given the measurement vector z, is to find x to minimize
the nonlinear function

J = 1
2 (x − x̄)T P̄−1(x − x̄) + 1

2 [z − c(x)]T V −1[z − c(x)]. (1.47)

This is a nonlinear weighted least-squares fit, an idea first given by Gauss in 1795.
Taking a differential of J, we have

d J = {(x − x̄)T P̄−1 − [z − c(x)]T V −1C} dx

+ 1
2 dxT

{
P̄−1 + CT V −1C − [z − c(x)]T V −1 dC

dx

}
dx + · · · , (1.48)

where

C

= dc/dx, (1.49)

which is evaluated at x . The term containing the second derivative matrix dC/dx ≡
d2c/dx2 is usually negligible, since z is close to c(x). Thus, minimizing d J with re-

spect to dx yields dx = −P̂ · gr, where P̂

= (P̄−1 + CT V −1C)−1, gr = P̄−1(x − x̄) −

CT V −1[z − c(x)]. x can determined using a Newton-Raphson type algorithm such
as the one given below.

� Guess x .
∗ Calculate z̄ = c(x) and C = dc/dx (evaluated at x).
� Calculate P̂


= [P̄−1 + CT V −1C]−1 and gr

= P̄−1(x − x̄) − CT V −1[z − c(x)].

� dx = −P̂ · gr .
� If |dx | < ε then stop.
� Replace x by x + dx and go to (∗).

Here P̂ is the posterior error covariance of the estimate of x . This algorithm is
implemented in the MATLAB code NL-EST (included in the OPTEST Toolbox on
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FIGURE 1.7 Position Estimation using Angle Mea-
surements on a Base Line

the disk). The user must supply a subroutine that calculates z̄ = c(x) and C = dc/dx
evaluated at x as illustrated in Example 1.5.1 below.

EXAMPLE 1.5.1 NONLINEAR ESTIMATE WITH ANGLE MEASUREMENTS
We wish to estimate the location (x, y) of a point A in a plane by angle measurements
zi from several points Bi , i = 1, 2, . . . , N , on a base line (see Fig. 1.7).

The angle measurements zi are related to the locations of A and Bi by the nonlinear
relations

zi = tan−1 y

x − �i
+ vi ,

where vi is a random error made in the angle measurement. We assume that

E(vi ) = 0, E(viv j ) =
{

Vi , i = j,
0, i �= j.

Suppose that there are three measurements, and the data are:

i �i (ft) zi (deg) Vi (deg2)
1 0 30.1 .01
2 500 45.0 .01
3 1000 73.6 .04

The codes pos-est and e01-5-1(listed below and on the disk) calculate z̄ and
C and the estimate, giving[

x̂
ŷ

]
=

[
1204.8
701.8

]
ft, P̂ =

[
10.98 10.11
10.11 12.60

]
:

% Script e0151.m; nonlinear position estimation with angle
% measurements; x=[x1 x2]’; z(i)=atan[x2/(x1-el(i)].
%
m=pi/180; z=m∗[30.1 45.0 73.6]’; V=(.1∗m)̂ 2∗diag([1 1 4]); el=1000∗
[0 .5 1]’; xb=[1100 600]’; Pb=1e12∗eye(2);

[xh,Ph]=nl est(’posest’,xb,Pb,z,V); x1=xh(1); x2=xh(2);

function [zb,C]=posest(x)
% Subroutine for e0151.
%
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FIGURE 1.8 Numerical Example of Position Estimation using Angle Measurements

el=1000∗[0 .5 1]; for i=1:3, zb(i)=atan(x(2)/(x(1)-el(i)));
d(i)=(x(1)-el(i))/(cos(zb(i)))̂ 2; C(i,:)=

[-tan(zb(i)) 1]/d(i);
end; zb=zb’;

The square roots of the eigenvalues of P̂ are [4.68, 1.28] ft, and the corresponding
eigenvector directions are [47.0, −43.0] deg. Thus the one-σ likelihood ellipse has
semiaxes [4.68, 1.28] ft, and these axes are at [47.0, −43.0] deg as shown in Fig. 1.8.
The three-σ ellipse is also shown, along with the three lines of sight from B1, B2, and
B3. A code PLTELPS is included in the OPTEST Toolbox that plots one-σ ellipses
given the coordinates of the center and the covariance matrix P.

PROBLEMS

1.5.1 A SHIP COASTAL NAVIGATION PROBLEM
A navigator has an estimated position of his ship 3.00 km directly west of a landmark
A and 5.00 km from another landmark B, with an estimated accuracy of ±0.3 km in the
north–south direction and ±0.2 km in the east–west direction. He then measures the


